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NOMENCLATURE

English

a radius at bubble wall
C species concentration
d bubble diameter
D Diffusion coefficient
f frequency, Hz
g gravity constant
H(t) arbitrary function of time
In mass
P pressure
AP pressure amplitude
r radial coordinate
R gas constant
t time
T temperature
U velocity
V bubble volume
x bubble translational distance
Pe Peclet number, 2i.b

Re Reynolds number, 21,7h
Sh Sherwood number, see eq. (33)

Greek

7 specific weight
6 diffusion thickness
e 62

0 angular coordinate
1A dynamic viscosity

V kinematic viscosity
p density

time constant or .':-mny variable
4, stream function (,: di -'.sion parameter

b bubble
B Bottom, start of bubble rise
f fluid
r radial component
s saturation
8 tangential component
00 ambient
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PSEUDO-STEADY DIFFUSIONAL GROWTH OR COLLAPSE
OF BUBBLES RISING IN TIME DEPENDENT

PRESSURE FIELDS

INTRODUCTION

The growth or collapse of bubbles, whether they be comprised of the vapor of the
surrounding ambient fluid or of an entirely different species, has led rise to some very
significant phenomena. Examples of which, to name a few, are nucleate boiling in pools
and thin liquid films, cavitation, bubble formation in molding processes, entrainment from
breaking waves and jets, and bubble persistence in the wakes of ships. Vapor bubble
generation and growth, though very, important to the field of nucleate boiling heat transfer,
will be discarded as a topic for this report and, instead, concentration will be focused on
the growth or collapse of bubbles due to mass transfer between the bubble species and the
surrounding fluid.

One of the first formulations of bubble diffusion was that of Epstein and Plesset [1] in
which the mass transfer from a stationary bubble was examined. A bubble was shown to
either grow or collapse depending on whether the ambient fluid was either oversaturated or
undersaturated, respectively, with the species that comprised the bubble. Other significant
analyses of this problem can be found in the works of Kirkaldy [2], Scriven [3], and Goodrich
[4], to name a few. Early experimental studies of diffusion controlled growth or collapse
have been conducted by Haughton, et al. [5], Wise and Haughton [6,7], and Krieger, et al.
[8] in which dissolving spherical gas bubbles were studied in order to determine diffusion
coefficients. In those studies the bubbles were attached to a solid wall or capillary so that
they were stationary. Gowing [9] in a more recent study also examined the dissolving
characteristies of bubbles affixed to electrodes. In Gowing's study,both sea water and
distilled water were used as the dissolving medium.

Ruckenstein [10], in a very eloquent solution, showed that if a bubble were moving,
translation would have a very pronounced effect on diffusion. Even for small bubble ve-
locities, convective diffusion would supply a very large portion of a bubble's collapse rate,
assuming that the bubble is moving in an undersaturated ambient fluid. In this model the
effect of the bubble's radial velocity was neglected. Ruckenstein and Davis [11] then ex-
tended the analysis in [10] to cover the case where the bubble radial velocity is important,
such as the case when either a high concentration gradient exists at the bubble wall or
the ambient fluid has very high diffusion coefficient. Under these conditions, the bubble
wall may be moving at the same order of magnitude as the bubble translational velocity in
which case the radial velocity becomes important. In both models, the bubble is assumed
to be moving at a steady velocity and the surrounding pressure field is assumed constant.

Recent experimental data for bubbles rising in a liquid have been taken by Brankovic,
et al. [12], Ishikawa, et al. [13] and Payvar [14] to name a few. Brankovic, et al. collected
data for air and carbon dioxide bubbles with a triple-peak laser Doppler technique. The
bubbles, which were on the order of 0.25 to 1.2mm in diameter, displayed the typical very
quick acceleration to some maximum velocity, then a decrease in terminal velocity as they
continued to rise. For the smaller bubbles, this velocity decrease reached a steady velocity,
but for the larger bubbles the velocity decrease continued throughout the measurement
lenhtb of the test 'ection, 12cm. This transition to lower velocities was partially explained
by the presence in the liquid of surfactants which have a tendency to accrmulate on the
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bubble skin and increase the bubble's drag by freezing the interfacial motion between the
bubble and its surrounding fluid. Drag coefficient and Sherwood number as functions of
Reynolds and Peclet numbers, respectively, were also shown.

Ishikawa, et al. [13] measured the rise velocity for 60- I170pm carbon dioxide bubbles
in water and aqueous sucrose solutions via a photographic method. Their results agreed
well with theoretical and empirical equations for rigid spheres in creeping flow for dB less
than 150p m and began to approach the solutions for clean fluid spheres as dB increased.
though partial contamination did occur. In their data reduction, they did take into account
bubble volumetric expansion through its rise in a hydrostatic pressure field.

Payvar [141 examined the effects, both experimentally and analytically, of a rapid de-
compression on bubble growth for C0 2 bubbles in ethyl alchohol. In this study the bubble
was assumed to be stationary and the diffusive boundary layer around it was assumed con-
stant. Predicted results were in good agreement with experimental measurements. The
initial pressure range at the start of the decompression was 0.44-1.12MPa.

The purpose of this theoretical study is to examine the effects on mass transfer of
a bubble rising in a hydrostatic pressure field and undergoing various time dependent
pressure fluctuations. To date, there have been no mathematical models for a translational
bubble rising through such fields. Furthermore, bubble experimental rise data have only
been obtained for a static hydrostatic head, with the exception of Payvar [14], but that was
for a stationary bubble. This paper will focus on pseudo-steady bubble translation as a
first attack on these types of problems. The pseudo-steady analysis will hold when bubble
acceleration through the pressure field is negligible. Three types of pressure fields will be
examined: 1) a simple hydrostatic head; 2) a compression/decompression hydrostatic head:
and 3) an oscillating pressure field imposed on a hydrostatic head. The mathematical model
will entail extending the model of Ruckenstein and Davis [11] to cover time dependent
pressure fields imposed on hydrostatic heads.

GENERAL EQUATIONS

The problem to be considered will be a single component bubble rising vertically in a
liquid (Fig. 1). The liquid maintains a hydrostatic head and a time dependent pressure field
may or may not be present. A rising bubble would therefore exhibit a volumetric change
due to the change in ambient pressure it encounters and if there is any mass transfer via
diffusion a second term for volumetric change would also be apparent. This can readily be
expressed by differentiation of the perfect gas law as

1 dV 1 [dMb VdP1
Vdt = m b d t RT J_ (1)

The first term on the right represents the volumetric change due to mass loss or gain and can
be found by first solving the equation for convective diffusion in the fluid surrounding the
bubble, then finding the gradient of concentration at the bubble wall and finally integrating
the concentration gradient over the bubble surface to find the total mass transfer. The
second term represents the volumetric change the bubble undergoes as it travels through
the external pressure field. The diffusion equation can be represented as

2
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Figure 1. Bubble Configuration.

ac W U9 a oC D 8 2 (2),-T + rT +  r L2

subject to the following conditions,

at r=,,,C=C0 ,t>O0, 3a)

at r=a,C=C,,t>0, (3b)

and
at t=0,C=C0,allr>a. (3c)

Furthermore, if the diffusion coefficient is small such that the diffusion penetration depth
is much less than the bubble radius the term on the right can be expanded and reduced,
i.e.

i 2 C 28C
3r2 r

The result is
OC + C U C 2 C(2a)
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From Scriven [31 the mass transfer rate at the bubble wall is

d j =2i'ra 2 5 - sinOdO (4)
0

wh,-re molal effects due to dissolving species have been neglected. Continuity in the fluid
surrounding the bubble can best be employed by the use of the stream function, v, as,

r = 1 04' (5)

r 2 sin 0 (a

and

= 1 alp (5b)
rsin Or

This then implies the use of axial symmetry on the rising bubble.

The radial and tangential velocities in eq. (2) and (5) can be found from the solution
to the transient stream function equation,

) 2 _=O (6)

where

E 2 0 2  sinO0 (1 a)
-=r2 + r2 0 sn 8 9

It should be noted that in eq. (6) the convective acceleration terms have been omitted
since we are considering transient creeping flow. This is a good assumption considering the
proposed slow acceleration changes of the bubble. The boundary conditions to equation
(6) with respect to axes fixed at the instantaneous bubble center are

0, U, U9 = finite as r --+ c, (7a)

I 0¢) = Uba2cosO+a2d- -da (7b)

[-r 1 o) Ori 1 ( o')I = 0, (7c)r OsinO Tr To-i 8r2
r .rn TO ro- o

and
0=0 at t=0. (7d)

Equation (7c) applies for the case of a fluid sphere. It is a suspected fact that surfactant
contamination does effect the motion of the rising bubble by stopping the movement of the
bubble interfacial surface, thus, causing the bubble to behave like a solid particle; however,
this hypothesis is not investigated in this theory.

4



Notice that in boundary condition (7b), the bubble velocity is present. In general
it cannot be assumed constant, hence, it can be obtained through the law of Lagrangian
motion, which can be written for the bubble as

~(MbUb) = -7rAt [r 4 sn( )] dO
0

7 ]43
+pf rf L.t (V) r2  a sinO dO + pf3ra (8)

0

The left hand side of eq. (8) represents the time rate of momentum change for a drop
or bubble. In the case of a gaseous bubble in a heavy liquid, it is generally very small.
The first term on the right side represents the steady normal and tangential forces that
the fluid exerts on the bubble. The derivation of the format for this term can be found
in Happel and Brenner [15]. The transient second term on the right, again from [15],
represents the change in momentum due to added mass, "history" or Basset - Boussinesq -
Oseen (B-B-O) term, and (in the case of a fluid sphere) the momentum required to change
the motion of the bubble-fluid interface. Finally, the third term is due to buoyancy, here,
only the density of the fluid is retained since it is assumed that the fluid is much heavier
than the gas.

The second term in eq. (1) represents the volumetric change due to surrounding
pressure. If the hydrostatic pressure can be expressed as

P = PB- -YX, (9)

where PB = the pressure at the depth where a bubble is first released, then

dP _ dxd= -I- d = -- YUb. (10)

Hence, for the case of a bubble rising in a simple hydrostatic pressure field, the rate of
change of pressure that the bubble encounters is directly proportional to the bubble rise ve-
locity. Consider now a bubble rising in a fluid that is undergoing a compression/depression
pressure field which can be caused by the charging or venting of the atmosphere above the
water column to a desired pressure differential. The pressure field can be expressed as

P = PB +LPe :i/r- _ Yx (9a)

where AP = desired pressure differential, and r = time constant. It then follows that

dP : Pe±t/ -YUb. (10a)
dt

5



An imposed sinusoidal oscillation on the hydrostatic field can, likewise, be expressed
as

P = PB + LPsin(27rft) - 7z (9b)

where
f = oscillation frequency. H,

Then dP
= 2rfAPcos(27rft) - -lUb (10b)

dt

In general if we can express any time dependent field mathematically, i.e., Fourier
series, complex series, etc, we can then take the first derivative with respect to time and
utilize it in eq. (1).

The equations thus developed represent a system of equations that is, in general, both
coupled and non-linear. The non-linearity arising from the fact that the radial boundary
condition for the stream function is a non-linear function of the bubble radius which in turn
is coupled through the convective diffusion equation. Thus, a general solution procedure
would entail the solution of eqs. (1) through (10) simultaneously, which is beyond the
scope of this first presentation. We shall restrict ourselves to the solution of pseudo-steady
problems which, as we shall see, will decouple the system of equations and reduce the issue
of non-linearity to a very weak one.

VELOCITY PROFILES AND BUBBLE MOTION

In the following solution, the prevailing assumptions that reduce the system of equa-
tions to a pseudo-steady set are:

1) the bubble accelerational changes are small,
and

2) the bubble radial growth/collapse rate is small.

The above assumptions allow us to linearize eqs. (6) and (7) into the following super-
positioned form

' = .... ,rn ,aton + 0 ao,,o, (11)

..The first part of eq. (11) has been solved by the method of Laplace transforms and
for a no-slip boundary condition eq. (8) becomes

0(mb~) dUb - 67rbsaUb- rnU = 2 dt

9m 1 If dUb/drd + (12)

0

6



The first term on the right represents the added mass loading, the second term is the
Stokesian drag, the third term represents that obtained by Basset [16], and the fourth is
the bouyant force. For the case of a bubble, Morrison and Stewart [17] solved eq. (8)
shown here assuming no transient external forces,

mf dUb 3 mf [v dUA/dr,
7(mbUb) 0 4rpaUb - Lf - d-

0

trfan d2Ub/dr
2

mf.JcP b/ dT" + mfg. (13)

0

Here, the drag and history terms are altered by a constant, and the fourth term represents
the momentum required to move the bubble interface during changes of acceleration. For
the case of a gaseous bubble undergoing negligible acceleration changes in a neavy fluid.
eqs. (12) and (13) reduce to

Ub = C(g/v)a2(t), (14)

where the constant
w1/3, for slip flow, Re<1;

C = 2/9, for no-slip, Re<1; and (14a)
1/9, for viscous dissipation, Re>>l.

The potential flow solution with viscous dissipation by Levich [18] was here added for
later comparisons. Since bubble acceleration is assumed small, eq. (14) is representative
of the Hadamard-Rybczynski solution for a bubble [19, 20]; the velocity profiles relative
to a stopped bubble center, are

U U L ' + "Ub _- U.) a - Ub COSO (15a)

and

U# [(Lo _ L 3 + L, _3Ub a +- Ub inO (15b)

where
U"= U

2(1 + mg/li)"

The second term on the right of eq. (11) represents the stream function for the pure
radial motion of a stopped bubble. Consequently, there are no fluid forces on the bubble
for pure radial motion, hence this term does not add to the fluid loading on the bubbe
through eq. (8). This can readily be verified through eq. (8) since

V radia -a 2 (da/dt)cosO. (16)

7



Thus, eqs. (12) and (13) remain intact. The radial stream function does, however, add a
component to the velocity r- 3file in eq. (15a) of

a 2 (da\

Hence, eq. (15a) becomes

~r[~ 0 P )2 (2r17

+ a(da)"

SOLUTION

Eq. (1) shows that the radial history for the rising bubble can be expressed as

da _a [dmb V dP
dt 3m,[ dt RT - " (is)

The first term in the brackets on the right side of eq. (18) can then be found by utilizing
the solution of Ruckenstein and Davis [111 for diffusion controlled growth of a bubble
moving at a steady velocity, and slowly changing mass. This solution seemb applicable for
most gases in water where there exists moderate concentration gradients at the bubble wall
and small diffusion coefficients. It is not the intent of this paper to repeat the eloquent
solution by Ruckenstein and Davis [11], only to show that their model can be utilized for
problems of time dependent pressure fields imposed on a bubble rising in a hydrostatic
head. Restrictions to the use of their model are limited when one of the following occur:

1) density differences in the two fluids allow a significantly long duration bubble
acceleration profile;

2) the time dependent pressure field is able to make large volumetric expansions, in
which case large bubble accelerations will be present;

3) the diffusion process is large enough to force large changes in bubble radius
through mass loss/gain, thus allowing significant bubble acceleration:

and

4) the time dependent pressure field varies rapidly, such as high frequency acoustic
waves or sudden explosions in which case bubble radial inertial effects will be
present which are neglected in this model.

Ruckenstein and Davis [11] solved eq. (2a) subject to eq. (3) for various velocity profiles
by first employing the cL rnge in variables that shifts the coordinate ;ystem from a moving
boundary to one where the frame of reference is fixed at the moving bubble interface. i.e..

y = r - a

8



where y is the diffusion distance from the bubble outward into the fluid (Fig.1). They
assumed that this diffussion distance is small compared to the bubble radius, hence eq.
(2a) was written for small y/a as

ac y VrcosO + 2 da V + V 92 = D02C (19)- --D-8 a e y2

where

w f U6, slip-flow, Re<l (20a)
Vr 3Ub, viscous dissipation, Re>>1,

and
-n U /2, slip-flow, Re<l (20b)

V9 - ~3Ub/2, viscous dissipation, Re>>l.

Ruckenstein and Davis then employed a similarity transformation of the form

7 (21)
6(g,t)

which transformed eq (19) into an ordinary differential equation in r7 in which the constant
for the d term was a functional equation of 62. The two resulting equations were then

d2C d--
2 7 = 0, (22)

and
+ [(t)cosO + -y(t)]e + a(t)sinO = 4D, (23)

where
= 62(9, t),

)- 
-a

2V
a

and
4 da

a d"

After the application of the method of characteristics to eq. (23) their solution for
the concentration in the vicinity of the bubble became

C-o - erfc t (24)

9



where

( [tan2 (0/2)]exp[2 f a(s)ds]
62 (0, t) 4Dfexp f 3().

0 t 1 + [tan2 (0/2)]eXp[2 f a(s)ds] (25)
t

The mass transfer term of eq. (18) can then be found from

OC) C = (CO -2C) -(2 (26)
ar ay) C=OCs rbj, (t)

and substituting this result in eq. (4). The solution of eq. (18) through eq. (24) and (25)
was found by the present authors to be too time consuming a solution on a small computer
for the problem at hand. It was found that by solving eq. (23) in a forward-difference
marching scheme for 6(9, t + dt) and, by utilizing this solution for 6(0, t + dt), the problem
would converge much faster.

The numerical scheme employed was

(9,t)= 2 9,t) = 4D + a(t)sinG (t, 0 - dO) + e(,-dt,e)ca(t~sinO _ , (--t

(t at + Ae t ) COS -Y(t)]

If one assumes a general time dependent pressure field imposed on a hydrostatic head, i.e.,

P = PB + APH(t) - yx, (27)

where H(t) is some time dependency function for the amplitude AP, then
dP
d =/XPH'(t) - -TUb, (28)

some examples of which were given by eq. (10). Eqs. (28), (26) and (18) can then be
combined to form T

da = a 4a2DVr' (Co - C) sin9 dO
dt - , (29)

(4/3,Ta3)[(APH'(t) - -YUb]

The bubble radius at time, t, can then be found from the bubble radius at time t - dt by

t

at = at-dt +- -- dr, (30)[ (daN
t-dt

which can be evaluated by an integration scheme such as the Trapezoidal or Simpson's
rule. The numerical procedure for the solution of eqs. (29) and (30) was as follows:

10



1) from the previous bubble radius, a (t), 0 (t) and -y (t) were calculated and 6(0, t)
was found through eq. (23a);

2) da/dt, eq. (29), was then evaluated;
3) at was next evaluated through eq. (30);
4) the bubble mass was evaluated through a form similar to eq.(30), utilizing eq.

(4); •
5) the bubble mass was also independently evaluated from both at in 3) and the

new bubble density based on surrounding pressure (surface tension effects were
not necessary for bubbles larger than 20/tm);

6) the mass terms in 5) and 4) were compared. If the comparison was not satisfactory
the scheme was reiterated with the new at. If the comparison was satisfactory,
the time was marched and the process repeated.

Significant Translation

When the bubble translational velocity is much greater than its radial growth velocity,
eq. (24) can be greatly simplified by dropping the radial growth term. This can be expected
to occur when the gas solubility is small, hence, translational convection predominates.
Ruckenstein [101 shows that this simplification results in

Sh = (Pe/r)'/2 w(T) (31)

where
& tUb_!2a, fluid-sphere, Re<< 1

T _ potental flow, Re>>l,2 a p

and w(T) =function evaluated in Ref. [10].

When T>>1,w(T)=4/v/3 and eq. (31) becomes

Sh = 4(Pei37r)1/2  (32)

Actually,w(T) becomes asymptotic to 4/v/3 as T > 5. For rising air bubbles in water, eq.
(32) is not a bad approximation of the mass transfer for bubbles greater than about 15um.
By definition,

Sh = 2aN (33)
(Co - C.)D

where

N -dn/dt
47ra

2

The combination of eqs. (32), (33) and (16) yields the following equation for the bubble

mass transfer rate

m_ (CO - C.) [!-q] 1/2 a5/ 2, slip-flow, Re<zc1,

dt 8_ /2~S0 J- C/2 as viscous dissipation, (34)
Re> >1.

11



The substitution of eqs. (34), (28) and (16) into eq. (18) yields

d-= - [C'al/2 + C2a6 - C3H'(t)a4 ) (35)
Tt 3 mb

where

3 V2(Co- v,)

2 I 94. slip, Re<1,
C 2 r, viscous dissipation, Re>>1,

4 7rAP

3 RT

Equation (35) can easily be solved by a fourth order Runge-Kutta routine. All that

is needed are the initial conditions ao, mb. and the initial pressure.

RESULTS

The results presented are for a bubble rising in a fluid that can undergo pressure
changes by means of allowing the atmospheric pressure above the water column to vary
in time. Figures 2a-2c depict the diffusion boundary layer shape (as calculated by eq.
29) surrounding air bubbles of radii sizes 0.017, 0.13 and 0.47mm rising in a static water
column with an ambient air concentration of 8.2ml/l (0 = 3.53). The respective bubble
Reynolds numbers are 0.04, 5.83 and 262. It should be pointed out that eq. 29 does not
realistically represent the rise of a 0.47mm radius bubble. The reason for this being that for
a bubble of this size, a wake of shedding vortices would exist and the bubble would oscillate
and spiral as it rises. Figure 2c should be viewed for comparison purposes only. As can
be seen in Figures 2a-2c, the faster the bubble rises the more the diffusion boundary layer
is swept back around the bubble and the thinner its "tail" becomes. Across the diffusion
layer exists a concentration profile from the fully-saturated air concentration inside the
bubble to the ambient air concentration in the fluid outside the diffusion boundary layer.
The local diffusion rates of mass transfer around the surface of the bubble are a function
of the diffusion layer thickness. The thinner the layer, the less resistence to mass transfer,
consequently, larger mass transfer rates result. In Figure 2a for a 0.017mm radius bubble,
large species outflow is apparent from the leading hemispherical bubble surface where the
diffusion layer is very small. As flow proceeds toward the rear of the bubble, the diffusion
layer thickens. When the diffusion layer approaches a very large thickness (the region
sweeping a 300 arc of the diffusion tail directly behind the bubble) mass diffusion essentially
stops. Figure 2b for a 0.13 radius bubble shows the rearward arc of the diffusion tail to
close to approximately 150. The diffusion is thinner in the leading edge region (though
this can't be seen from the scale of the figures) and extends furtherback, hence, more
mass transfer is occurring in Figure 2b than 2a. This is what one would expect since
the convective velocities are significantly larger in Figure 2b than Figure 2a. Figure 2c,
0.47 radius bubble, extends this argument because an extremely thin diffusion layer exists
almost entirely around the bubble. One can see that the faster the bubble rises, the thinner
the diffusion layer becomes and the more it is pinned by the larger convective velocities at
the bubble surface.

12
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Figure 2a. Diffusion layer around rising bubble for Re=0.04.
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Figure 2b. Diffusion layer around rising bubble for Re=5.83.
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Effect of Hydrostatic Head - Static Case.

Figures 3a and 3b represent the solution to eq. (29) for bubbles with initial radii
of 0.50 and 0.20rm, respectively. The atmospheric A P for this case is zero. The ordi-
nate represents the dimensionless radius based on initial bubble radius and the abscissa
represents the dimensionless distance in the translational direction based on initial bubble
radius. The solid curves represent eq. (29), and the dashed curves represent eq. (29) in the
absence of the pressure gradient term, i.e. this would represent the case of a bubble trans-
lating in a constant pressure field. The curves in Figures 3a and 3b are also represented
by the parameters 4 and/3

where

S= (CO - C.) [D]1,2

= aC 4
4aRel/2'

= [2v/3-, slip-flow, Re< 1
1.. 6, viscous dissipation, Re>> 1.

The parameter groupings 4 and 6 can most readily be seen by examination of eq.
(35) with C3 = 0. Eq. (35) can then be rearranged as follows,

da = a 1dP(

dT 3 ,) [0 + 1]. (35a)

4 represents a collection of mass transfer parameters and /3 represents the ratio of the
bubble volumetric change caused by mass transfer (diffusion) over the volumetric change
caused by the time rate of change of the ambient pressure. Both terms were evaluated at
their initial conditions, in reality, they would both continuously change during the time
history for the rising bubble.

In Figure 3a, a0 = 0.50mm, 4 equals 0 represents no bubble species loss via diffusion.
This was achieved by setting the diffusion coefficent, D, equal to 0. A bubble with 4' = 0
will undergo a volumetric increase as it rises through a hydrostatic head because of the
decreasing ambient pressure it encounters as it rises. Of course, the case of no change in
pressure results in a straight horizontal line at a/ao = 1.0. The next pair of curves at 0
= 2.38 is representative of an air bubble rising in undersaturated water. The net result is
a slow decrease in bubble volume as it rises towards the surface. A very strong diffusional
loss can be seen at 4 = 14.24, 13 = 10.0. At x/ao z, 3500, the bubble dissolves. The
final curve, 4 = 266.0, 3 = 1780, shows very quick dissolution. This is representative of
a C0 2 bubble in water. As can be seen by the series of curves on Figure 3a, when /3 gets
very large, the effect of the ambient pressure change diminishes. This means that either
a very large mass transfer loss and/or a very slow moving bubble (small bubble) causes
the bubble to "see" a nearly constant pressure environment. As one can see in Figure 3b
for a 0.20mm radius bubble, the effect of the pressure change due to a hydrostatic head
is much less noticeable. Notice that in Figure 3b, the mass transfer constant 4 represents
the same mass transfer parameters as in Figure 3a but the 3 's are different because of
both the smaller bubble size and , consequently, slower bubble rise velocity.
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Figure 3a. Diffusion history of a rising 0.50mm radius bubble.
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Figure 3b. Diffusion history of a rising 0.20mm radius bubble.
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The effect of large bubble translation

When the biibble translational velocity is significantly larger than its radial velocity,
eq. (35) greatly simplifies the numerical processing.

Figures 4a through 4c represent bubble rise in a hydrostatic head where the emphasis
is on the comparison of eq. (29), with the model for significant translation, eq. (35). As
can be seen, the simpler model Eq. (35), is quite accurate for bubbles larger than 0.02mm
radius.

A comparison of convective vs. molecular diffusion models

A comparison of convective diffusion models and molecular diffusion models, i.e., no
bubble translation, can be made by comparing the representative constituents of eq. (2),

ac
Vr ar

will be selected as the convective representative, and

D92 C

will be chosen as the molecular representative.

The molecular diffusion term is included in the convectve diffusion, eq. 2, since it defines
the diffusion boundary layer thickness around the translating bubble. When the convective
terms are excluded in eq. 2, the familar Epstein-Plesset equation for molecular diffusion
from a stationary bubble results.

These terms can be non-dimensionalized as follows,

Pe aC* a2 C*
r * ar . 2 (38)

where
w * = r/ao,

Pe - Ubao

D '
and

C--

C. - CO"

Then, if
aC" r* 82 C"

Or* Pe ar- 2

convective diffusion predominates. This criterion can loosely translate to UDaa >> 100
for significant convective diffusion. Table I shows the minimum translational velocities for
given air bubble radii in water where convective diffusion dominates.
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Figure 4a. Diffusion history of a rising 0.50mm radius bubble.

Comparison of Eqs. 29 and 35.
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Figure 4b. Diffusion history of a rising 0.20mm radius bubble
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Figure 4c. Diffusion history of a rising 0.02mm radius bubble.

Comparison of Eqs. 29 and 35.
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Table I
Predominant Convective Diffusion, D = 2x 10-5 cM 2 Is

ao, mrnm Ub, mm/s

0.50 0.4
0.10 2.0
0.02 10.0
0.01 20.00

Figures 5a and 5b compare the convective diffusion model eq. (29) solid line, with
the molecular diffusion model, dashed-line, of Epstein and Plesset [1]. As can be seen in
Figure 5a for the bubble of initial radius size 0.20mm, the pure molecular diffusion model
greatly underpredicts the radial history of the rising bubble. The reason for this is that
molecular diffusion rates are much too small to account for the mass loss of the translating
bubble which experiences large convective diffusion in this instance.

For the 0.02mm radius bubble case, Figure 5b, one can see that the convective diffusion
effect is small compared to the molecular diffusion effect. This is shown by the fairly close
agreement of the two models which signifies the small convective diffusion magnitude. At
0 = 3.53, initally there is a small convective effect imposed on the molecular diffusion
effect as evidenced by the slightly faster bubble dissolution rate to about a/ao = 0.5.
Then eq. (29) actually underpredicts the rising bubble dissolution history as evidenced by
the crossing of the two models and the subsequent slower predicted bubble diffusion rate.
The reason for this underprediction of eq. (29) compared to the Epstein-Plesset model is
because in eq. (2) a portion of the molecular term was dropped to yield the approximated
eq. (2a). At 4 = 14.24 the effect of this approximation is apparent. At V, = 266.0, due to
the very high diffusion potential which imparts a large radial velocity, the above mentioned
effect diminishes slighty. In fact, the Epstein-Plesset model may be in error since their
model does not incorporate a radial convective term in its formulation.

Decompression Case

Figures 6a and 6b represent a bubble rising in a hydrostatic head where the atmosphere
above the hydrostatic head undergoes a decompression. Eq.(29) is employed with Eq. 10a.
and is represented by the solid curves. The same cases for no mass loss, V' = 0. are
represented by dashed curves. The decompression amplitude above atmospheric pressure
is 0.5atm. Three different decompression time constants were modelled: r = 0.10, r = 1.00
and r = 10.0s. The case of r = 0.10s represents the fastest decompression rate depicted
on Figures 6. For the 4 = 0.0 and 4 = 3.53 cases an initial quick expansion is seen at
z/ao approximately equal to 200 on Figure 6a and 20 on Figure 6b. This is due to the
sudden atmospheric pressure "drop" above the hydrostatic head, thus, the bubble quickly
expands. For the 4 = 0.0 case, the bubble then rises in the hydrostatic head and undergoes
a slight volumetric expansion. For 4' = 3.53, once the volumetric expansion caused by the
sudden drop in atmospheric pressure is over, diffusion sets in and the bubble starts to
dissolve as it continues to rise in the water column.

At -r = 1.0s for 0 = 0.0 and 4 = 3.53, the initial volumetric expansion caused by
the atmopheric pressure drop is less noticeable in Figure 6a, and non existent in Figure
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6b for k = 3.53. This is due to the fact that the decompression process is slow enough to
allow the diffusion processes to start to become effective. At ?k = 0.0, there is less of an
initial volumetric expansion, but the bubble reaches the same total volumetric expansion
as it did at r = 0.10 because there is no mass loss and the venting process is completely
over. Since the processes started at and ended at the same beginning and end states, the
approximately same volumetric end states should result, although the paths taken were
different.

At r = 10.0s, the decompression process is very slow. For 4 = 0.0, the atmospheric
end state of the other two cases is not reached during the x/ao represented on Figures
6a and 6b. For V, = 3.53, the long decompression process allows diffusion to become
significantly established and the bubble history is similar to that of previous cases.

At 4 = 266.0, the decompression rates used were relatively small compared to the
initial high diffusion rates, hence, the bubbles were not affected by the decompression
processes and they dissolved quickly.

The decompression model is an interesting case because it might represent what would
occur to a bubble that was following a fluild streamline which would have an associated
decrease in pressure during acceleration such as flow around a submerged body, or airfoil.

Oscillation case and rectified diffusion

Figure 7 represents the case of a bubble rising in a hydrostatic head where the atmo-
sphere above the water column is oscillating at 1Hz with a pressure amplitude of 0.5atm.
The solid curves represent the oscillating case at various O,'s. The dashed lines represent
the simple hydrostatic cases of eq. (29) for the same O's. At 4 = 0.0, no mass transfer
occurs and the bubble oscillates as it rises to the surface. At 4 = 3.53, the bubble oscil-
lates, but it is also losing mass through diffusion. This can be seen because the oscillation
magnitude gets smaller and the bubble mean radius is decreasing until the bubble dissolves
at x/ao equal to 3200. As the bubble oscillates in size it is also oscillating in velocity at
this low frequency since the bubble velocity is approximately proportional the the radius
squared. However, as mentioned earlier, if the bubble acceleration is too large during the
oscillation process, eq. (29) might be invalid. This will be determined in a later section.
As ;, increases to 14.24, the oscillation amplitude is seen to decrease at a faster rate since
mass diffusion is higher and the bubble consequently gets smaller. At 4, = 266.0 there are
no oscillations because the bubble has lost its mass via diffusion during the first oscillation
pressure cycle.

There is the glimpse of an interesting phenomenon that occurs at V, = 3.53 on Figure
7. It can be seen that the oscillating bubble dissolution history appears to be slightly
slower than the case for no oscillation (dashed-line). This is seen by the slightly longer
distance traveled before dissolution. One might think that the same dissolution histories
should result. This discreptancy can be explained by arguments on rectified diffusion ,21].
These will be summarized as follows:

When the bubble is small its internal pressure during an oscillation cycle is larger be-
cause the external pressure field is squeezing the bubble; thus, the concentration of species
inside the bubble is higher (Henry's Law) than that during the expansion portion of the
oscillation cycle; assuming that the ambient species concentration remains the same, the
bubble, during the compression phase, will have a larger outgassing potential but a smaller
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outgas area; during the expansion phase, the bubble internal pressure is smaller, hence,
the species concentration is smaller which results in a smaller dissolution rate through a
larger surface area; the combination of smaller dissolution rate through a larger surface
area signifies a smaller net dissolution rate over that of a non-oscillating bubble; the result
is a bubble which dissolves more slowly than a bubble in a non-oscillating enviroment with
the same physical properties.

The above argument is valid for a bubble which exists in an undersaturated solution
below a specific rectified diffusion threshold which is property dependent. If the bubble
lies in a saturated solution, the net effect during cycle oscillation would be species inflow,
i.e., the bubble would grow because during the expansion portion of the cycle the species
concentration inside the bubble would be lower than that outside and over many repeated
oscillations the bubble would grow. This rectified diffusion phenomenon will not be dealt
with any further in this study.

VALIDITY OF THE PSEUDO-STEADY MODEL

The presented model was based on the assumption of negligible 1,-')ble acceleration
and resulted in the reduction of eq. (13) for Lagrangian motion to the simplified form, eq.
(14). In this section we will test the validity of this assumption by comparing the order
of magnitudes of the various terms in eq. (13) to the drag and buoyancy terms which are
assumed to be of order 1.

Added mass loading

The first term on the right of eq. (13) represents the added mass loading. A ratio of
added mass to bubble buoyancy therefore is

2L (duh) (dUb/ dt)2-d (39)
mfg 2g

In the following analysis, the bubble acceleration brought about by changes in ambient
pressure will be roughly estimated. This acceleration will then be introduced into eq. (39)
and if the ratio is less than 5%, the acceleration reaction term will be deemed negligible.
First, the assumption of slow mass transfer reduces the differentiated perfect gas law to

dP _ 1 dV

dt - V2bRT)'v" dr (40)

In terms of bubble radius, this can be rewritten as

= -(mbRT) ( 9 ) da/dt
dt4r a4  (41)

In the presented pseudo-steady model, the assumption of

Ub = 1a2
3v
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was made, where the coefficient for a fluid sphere (Re < 1) is used for this and the
remainder analyses. The bubble acceleration can, therefore, be expressed as

dUb 2 g da
dt- aT. (42)

The combination of eqs. (41) and (42) results in

dab 8 g ( ir'(dP) =(2)~ gi (dP\ 2 .(3
It 27- V - mbRT "dt- 9 J P, dt, " 4

The substitution of eq. (43) into eq. (39) then yields the following expression in order to
neglect the acceleration reaction,

9 2 1 d) < .05, (44)

where the pressure inside the bubble and its time derivative are given by eqs. (9) and (10),
respectively. Note here that surface tension has been neglected. When eqs. (9) and (10)
for the various cases are substibuted into eq. (44) a series of inequalities which represent
the validity of the variotus terms in eq. (13) result.

These are shown in Table II which represents data for an air bubble in 25C water. It
should be pointed out that in the cases of pressure oscillations or decompressions, the var-
ious trigonometric or exponential terms were taken at their maximum or minimum values.
whatever the case may be, to ensure the maximum value of eq. (44) in the construction
of Table II. For brevity, the analyses for each case will not be presented here for they
are only gross approximations. Table II shows that the acceleration reaction for a bubble
rising in a simple hydrostatic head is practically non-existent for bubbles of spherical or
prolate ellipsoid sizes, i.e., a 1mm diameter bubble has an Re of about 300 and will rise
as a prolate ellipsoid. Acceleration reaction may be important, however, in the cases of
pressure oscillations or decompressions where the bubble geometry may change quickly
and significantly. For example, bubbles of 0.02mm and 0.20mm radii that are subjected to
an oscillation pressare amplitude of 1/2 atm will have significant acceleration reaction for
frequencies over 166 and 5 Hz, respectively. The same two bubbles at an overpressure of
1/2 atm above atmospheric will have significant acceleration reactions if the time constants
for the decompression processes are less than 0.0003 and 0.01s, respectively, i.e., very rapid
processes.

"History" or B-B-O term

The ratio of the history to buoyancy can be expressed as

3V/!," [dUb/dr1  r (5r L~2 dr. (45)

0
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A conservative estimate for the magnitude of this ratio can be found by application of the
maximum value theorem which when applied to eq.(45) results in

t t

dr < [dUb/dT]maz J1  dr. (46)

0 0

The evaluation of the integral in eq. (46), substitution of eq. (43) and 5% ratio limit
results in

4 J lP]La L m 1/2 < .05 (47)

Table II shows the results of eq. (47) where eqs (9) and (10) have been used accordingly.
For 0.02mm and 0.20mm radii bubbles rising in a simple hydrostatic head of approximately
latin, the history effect can be neglected for times up to about 2 x 106 and 203 s, respec-
tively. The latter bubble has an initial velocity of approximately 46mm/s, if it did not
diffuse and could maintain this velocity it would travel 9.3m before history effects would
be noticeable. Hence, for small bubbles rising in a simple hydrostatic head, history effects
are not apparent, unless their path lengths are extremely long such as bubbles rising from
great depths toward the surface in the wake of a ship.

The same is not true, however, for the decompression or oscillation cases where bubble
acceleration/decelerations may be more noticeable. If we take the 0.02 and 0.20mm radii
bubbles as examples subject to an overpressure of 1/2atm, at a decompression time con-
stant of is the respective times for history effects to become apparent are 92 and 8.3 s. For
a decompression process with a time constant of 0.Is, the time for noticeable history effects
is less than is in both cases. Thus, the pseudo-steady model for the latter instance would
not be appropriate. The oscillation case is even more dramatic. Oscillation frequencies as
low as 1Hz coupled with high amplitudes of 1/2atm are still capable of providing fast bub-
ble accelerations/decelerations. History effects would be apparen" under these conditions
for the 0.02 and 0.20mm bubble for times of 0.26 and 0.023 s, respectively. Therefore, the
oscillation curves in Figure 7 may be somewhat in error.

Interfacial movement

The final ratio to be discussed deals with the amount of fluid momentum required to
move the bubble interface, assuming that a free shear surface exists. If the bubble behaves
as a solid body due to the accumulation of contaminents on its surface, this term would
be zero. The ratio of interfacial movement to buoyancy is

a tI (Lb/d 2 dr. (48)
0

Application of the maximum value theorem to pull the numerator out of the intergrand,
subsequent expansion of the numerator term and using only the leading term from that
expansion, results in the criteria shown in Table II. The results utilizing the same process
parameters as before indicate that for small bubbles (0.02mm radius) interfacial momentum
effects for a gas bubble in a heavy liquid are negligible. For larger bubbles (0.20mm radius)
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there is a very slight effect for the decompression and oscillation cases, and no effect for
the simple hydrostatic case.

CONCLUSIONS

A model for the diffusional growth or collapse of bubbles rising in time dependent
pressure fields has been presented. The pressure fields that the model was subjected to
included a simple hydrostatic head, a decompression hydrostatic head, and a hydrostatic
head coupled to an oscillating reference pressure. The model itself was an extension of
a model presented by Ruckenstein and Davis [11]. The model assumes a pseudo-steady
approach through the neglect of added mass, history and interfacial momentum terms.
Criteria are developed that allow the reader to determine the applicability of the pseudo-
steady model for particular bubble diffusion problems.

Results of the model indicate that for small bubbles, the effect of the pressure gradient
in a simple hydrostatic head is negligible. For bubbles larger than 0.50mm radius, there is
an effect of pressure gradient in the simple hydrostatic case. An approximate model which
neglects the bubble radial velocity is also developed to further facilitate computational
time and the agreement with the full scale model is good. The convective model, is also
compared to a molecular diffusion model and it is seen that even the slightest bubble
translational motion greatly enhances the diffusion process, though this result is not new.

Finally, test cases representing decompression and oscillation pressure fields are shown
and discussed. If the process is such that bubble acceleration/decelerations brought about
by changes in bubble volume are small, the pseudo-steady model is accurate.
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